DESIGN A VACUUM DISTILLATION UNIT FOR THE EFFICIENT PROCESSING OF 10 BARRELS PER DAY OF ATMOSPHERIC RESIDUE TO PRODUCE LIGHT VACUUM GAS OIL, HEAVY GAS OIL, AND VACUUM RESIDUE


DESIGN A VACUUM DISTILLATION UNIT FOR THE EFFICIENT PROCESSING OF 10 BARRELS PER DAY OF ATMOSPHERIC RESIDUE TO PRODUCE LIGHT VACUUM GAS OIL, HEAVY GAS OIL, AND VACUUM RESIDUE 

                                                         

CHAPTER ONE INTRODUCTION 1.1       Background of the Study

Distillation is a unit operation that has been around for a long time and continues to be the primary method of separation in processing plants, in spite of its inherently low thermodynamic efficiency. The pre-eminence of distillation for the separation of fluid mixtures is not accidental, but fundamental, and therefore unlikely to be displaced (kister, 1992)

From a kinetic standpoint (kister, 1992) mass transfer per unit volume in distillation is limited only by the diffusional resistances on either side of the vapour-liquid interface in turbulent phases, with no inert present. In almost every other separation process, there are inert solvents or solid matrices, and these lower mass fluxes. Distillation has the potential for high mass transfer rates.

From a thermodynamic viewpoint, a typical thermodynamic efficiency of a distillation system is about 10 per cent (kister, 1992). This can be enhanced if inter-condensers and inter-reboilers are used.

In fact, it has been shown that conceptually, a distillation system can be devised, which requires only the minimum work of separation (kister, 1992).

Although, a thermodynamic efficiency of 10 per cent appears low, not many other processes are more efficient (Haselden, 1981)

Distillation in general provides the cheapest and best method for separating a liquid mixture from its components.

Distillation has evolved from simple laboratory procedure to prime separation in the crude oil refining processes.

The world crude oil refining capacity is approximately 82 million barrels per day equivalent to about 4,200 million tonnes (Mt) per annum. This capacity is currently provided by a total of 720 refineries. (Oche, November, 2014)

Nigeria has a total number of four (4) crude oil refineries located in Port-Harcourt, Warri and Kaduna, with a total refining capacity of 445,000BPD. Port-Harcourt has two refineries, one with a capacity of 60000BPD and the other 150000BPD, Warri refinery has a capacity of 125000BPD and Kaduna refinery-110000BPD. Despite the large amount of crude oil deposit, Nigeria continues to experience perpetual shortages of products due to poor configurations and inefficient operations of the refineries, resulting in frequent breakdowns occasioned by poor or lack of turn around maintenance. (Oche, November, 2014)

1.2       Statement of Problem

Distillation still remains the most important separation method in the pharmaceutical, fine chemical and petroleum industries (Ukeje-Eloagu, 1998). Throughout the chemical industry, the demand for purer products, coupled with a relentless pursuit of greater efficiency, has necessitated continued research into the techniques of distillation (Ukeje-Eloagu, 1998).

The industrial application of distillation is widespread. It is used commercially in the purification of many chemical compounds such glycerol, hydrogen peroxide, turpentine, and fatty acids. Distillation has also been employed for a number of years by the petroleum and coal tar industries for the separation of many products.

Despite the wide use of distillation, there has been a little limitation in separating the bottoms of the atmospheric distillation unit. These bottoms contain useful products which cannot be separated under atmospheric conditions. Continual heating of these bottom products will lead to their cracking (breaking) and therefore cause plugin of the transfer line of the column. This limitation impedes the distillation process and recovery of the important constituents of the bottom of the atmospheric distillation unit.

Vacuum distillation (distillation at reduced pressure) can often be used to separate substances which decompose at atmospheric conditions or to obtain an increased relative volatility. It is of particular value in separating materials which decompose or polymerise at their atmospheric boiling point temperature.

1.3       Aim and Objectives

The aim of this research work is to “design a vacuum distillation unit for the efficient processing of 10 barrels per day of atmospheric residue to produce light vacuum gas oil, heavy gas oil and vacuum residue”

The objectives of this research work are:

Specify the degree of separation (i.e., product specification) Determination of the number of stages. Determination of reflux requirements. Select the type of contacting device (trays or packing) Column sizing (height, diameter, and number of real stages). Select the operating conditions for the column: temperature and vacuum pressure. Check flooding and weeping.

1.4       Significance of Study

Research work will present a simplified design of the vacuum distillation unit. Distillation processes have a determinant role in refining processes as it separates the crude oil into fractions, which are subsequently processed in other units or sent into storage.

This research work will increase appreciation and knowledge in distillation design. It can also be applied in the development of modular crude refinery to solve the problem of product shortages in Nigeria and Africa as a whole.

This research work when completed would help not only scale up but in the optimization of the entire petroleum refining process.

1.5       Scope of Study

The scope of this research work will be to give a study of the design of a vacuum distillation unit using the Liebman decomposition model. This research work shall be limited to the recovery of a binary product; vacuum gas oil and vacuum residue. Material and energy balance calculation will be carried out to ascertain the amount of feed and energy required by the unit. Determination of column dimensions and parameters using the McCabe-Thiele graphical method. Microsoft Excel spread sheet shall be used to plot the vapour-liquid equilibrium curve and also to obtain the number of stages.

 

.

DESIGN A VACUUM DISTILLATION UNIT FOR THE EFFICIENT PROCESSING OF 10 BARRELS PER DAY OF ATMOSPHERIC RESIDUE TO PRODUCE LIGHT VACUUM GAS OIL, HEAVY GAS OIL, AND VACUUM RESIDUE



TYPE IN YOUR TOPIC AND CLICK SEARCH.






RESEARCHWAP.NET
Researchwap.net is an online repository for free project topics and research materials, articles and custom writing of research works. We’re an online resource centre that provides a vast database for students to access numerous research project topics and materials. Researchwap.net guides and assist Postgraduate, Undergraduate and Final Year Students with well researched and quality project topics, topic ideas, research guides and project materials. We’re reliable and trustworthy, and we really understand what is called “time factor”, that is why we’ve simplified the process so that students can get their research projects ready on time. Our platform provides more educational services, such as hiring a writer, research analysis, and software for computer science research and we also seriously adhere to a timely delivery.

TESTIMONIES FROM OUR CLIENTS


Please feel free to carefully review some written and captured responses from our satisfied clients.

  • "Exceptionally outstanding. Highly recommend for all who wish to have effective and excellent project defence. Easily Accessable, Affordable, Effective and effective."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "I saw this website on facebook page and I did not even bother since I was in a hurry to complete my project. But I am totally amazed that when I visited the website and saw the topic I was looking for and I decided to give a try and now I have received it within an hour after ordering the material. Am grateful guys!"

    Hilary Yusuf, United States International University Africa, Nairobi, Kenya.
  • "Researchwap.net is a website I recommend to all student and researchers within and outside the country. The web owners are doing great job and I appreciate them for that. Once again, thank you very much "researchwap.net" and God bless you and your business! ."

    Debby Henry George, Massachusetts Institute of Technology (MIT), Cambridge, USA.
  • "Great User Experience, Nice flows and Superb functionalities.The app is indeed a great tech innovation for greasing the wheels of final year, research and other pedagogical related project works. A trial would definitely convince you."

    Lamilare Valentine, Kwame Nkrumah University, Kumasi, Ghana.
  • "I love what you guys are doing, your material guided me well through my research. Thank you for helping me achieve academic success."

    Sampson, University of Nigeria, Nsukka.
  • "researchwap.com is God-sent! I got good grades in my seminar and project with the help of your service, thank you soooooo much."

    Cynthia, Akwa Ibom State University .
  • "Sorry, it was in my spam folder all along, I should have looked it up properly first. Please keep up the good work, your team is quite commited. Am grateful...I will certainly refer my friends too."

    Elizabeth, Obafemi Awolowo University
  • "Am happy the defense went well, thanks to your articles. I may not be able to express how grateful I am for all your assistance, but on my honour, I owe you guys a good number of referrals. Thank you once again."

    Ali Olanrewaju, Lagos State University.
  • "My Dear Researchwap, initially I never believed one can actually do honest business transactions with Nigerians online until i stumbled into your website. You have broken a new legacy of record as far as am concerned. Keep up the good work!"

    Willie Ekereobong, University of Port Harcourt.
  • "WOW, SO IT'S TRUE??!! I can't believe I got this quality work for just 3k...I thought it was scam ooo. I wouldn't mind if it goes for over 5k, its worth it. Thank you!"

    Theressa, Igbinedion University.
  • "I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much researchwap.com, infact, I owe my graduating well today to you guys...."

    Joseph, Abia state Polytechnic.
  • "My friend told me about ResearchWap website, I doubted her until I saw her receive her full project in less than 15 miniutes, I tried mine too and got it same, right now, am telling everyone in my school about researchwap.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work"

    Christiana, Landmark University .
  • "I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!."

    Musa, Federal University of Technology Minna
  • "I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!."

    Ali Obafemi, Ibrahim Badamasi Babangida University, Niger State.
  • To contribute to our success story, send us a feedback or please kindly call 2348037664978.
    Then your comment and contact will be published here also with your consent.

    Thank you for choosing researchwap.com.